You are here
قراءة كتاب The Story of Electricity
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
charges bind or hold each other by mutual attraction. The bottle will therefore continue charged for a long time; in short, until it is purposely discharged or the two electricities combine by leakage over the surface of the glass.
To discharge the jar we need only connect the two foils by a conductor, and thus allow the separated charges to combine. This should be done by joining the OUTER to the INNER coat with a stout wire, or, better still, the discharging tongs T, as shown in the figure. Otherwise, if the tongs are first applied to the inner coat, the operator will receive the charge through his arms and chest in the manner of Cuneus and Muschenbroeck.
Leyden jars can be connected together in "batteries," so as to give very powerful effects. One method is to join the inner coat of one to the outer coat of the next. This is known as connecting in "series," and gives a very long spark. Another method is to join the inner coat of one to the inner coat of the next, and similarly all the outer coats together. This is called connecting "in parallel," or quantity, and gives a big, but not a long spark.
Of late years the principle of induction, which is the secret of the Leyden jar and electrophorus, has been applied in constructing "influence" machines for generating electricity. Perhaps the most effective of these is the Wimshurst, which we illustrate in figure 10, where PP are two circular glass plates which rotate in opposite directions on turning the handle. On the outer rim of each is cemented a row of radial slips of metal at equal intervals. The slips at opposite ends of a diameter are connected together twice during each revolution of the plates by wire brushes S, and collecting combs TT serve to charge the positive and negative conductors CC, which yield very powerful sparks at the knobs K above. The given theory of this machine may be open to question, but there can be no doubt of its wonderful performance. A small one produces a violent spark 8 or 10 inches long after a few turns of the handle.
The electricity of friction is so unmanageable that it has not been applied in practice to any great extent. In 1753 Mr. Charles Morrison, of Greenock, published the first plan of an electric telegraph in the Scots Magazine, and proposed to charge an insulated wire at the near end so as to make it attract printed letters of the alphabet at the far end. Sir Francis Ronalds also invented a telegraph actuated by this kind of electricity, but neither of these came into use. Morrison, an obscure genius, was before his age, and Ronalds was politely informed by the Government of his day that "telegraphs of any kind were wholly unnecessary." Little instruments for lighting gas by means of the spark are, however, made, and the noxious fumes of chemical and lead works are condensed and laid by the discharge from the Wimshurst machine. The electricity shed in the air causes the dust and smoke to adhere by induction and settle in flakes upon the sides of the flues. Perhaps the old remark that "smuts" or "blacks" falling to the ground on a sultry day are a sign of thunder is traceable to a similar action.
The most important practical result of the early experiments with frictional electricity was Benjamin Franklin's great discovery of the identity of lightning and the electric spark. One day in June, 1792, he went to the common at Philadelphia and flew a kite beneath a thundercloud, taking care to insulate his body from the cord. After a shower had wetted the string and made it a conductor, he was able to draw sparks from it with a key and to charge a Leyden jar. The man who had "robbed Jupiter of his thunderbolts" became celebrated throughout the world, and lightning rods or conductors for the protection of life and property were soon brought out. These, in their simplest form, are tapes or stranded wires of iron or copper attached to the walls of the building. The lower end of the conductor is soldered to a copper plate buried in the moist subsoil, or, if the ground is rather dry, in a pit containing coke. Sometimes it is merely soldered to the water mains of the house. The upper end rises above the highest chimney, turret, or spire of the edifice, and branches into points tipped with incorrosive metal, such as platinum. It is usual to connect all the outside metal of the house, such as the gutters and finials to the rod by means of soldered joints, so as to form one continuous metallic network or artery for the discharge.
When a thundercloud charged with electricity passes over the ground, it induces a charge of an opposite kind upon it. The cloud and earth with air between are analogous to the charged foils of the Leyden jar separated by the glass. The two electricities of the jar, we know, attract each other, and if the insulating glass is too weak to hold them asunder, the spark will pierce it. Similarly, if the insulating air cannot resist the attraction between the thundercloud and the earth, it will be ruptured by a flash of lightning. The metal rod, however, tends to allow the two charges of the cloud and earth to combine quietly or to shunt the discharge past the house.
CHAPTER II.
THE ELECTRICITY OF CHEMISTRY.
A more tractable kind of electricity than that of friction was discovered at the beginning of the present century. The story goes that some edible frogs were skinned to make a soup for Madame Galvani, wife of the professor of anatomy in the University of Bologna, who was in delicate health. As the frogs were lying in the laboratory of the professor they were observed to twitch each time a spark was drawn from an electrical machine that stood by. A similar twitching was also noticed when the limbs were hung by copper skewers from an iron rail. Galvani thought the spasms were due to electricity in the animal, and produced them at will by touching the nerve of a limb with a rod of zinc, and the muscle with a rod of copper in contact with the zinc. It was proved, however, by Alessanjra Volta, professor of physics in the University of Pavia, that the electricity was not in the animal but generated by the contact of the two dissimilar metals and the moisture of the flesh. Going a step further, in the year 1800 he invented a new source of electricity on this principle, which is known as "Volta's pile." It consists of plates or discs of zinc and copper separated by a wafer of cloth moistened with acidulated water. When the zinc and copper are joined externally by a wire, a CURRENT of electricity is found in the wire One pair of plates with the liquid between makes a "couple" or element; and two or more, built one above another in the same order of zinc, copper, zinc, copper, make the pile. The extreme zinc and copper plates, when joined by a wire, are found to deliver a current.
This form of the voltaic, or, as it is sometimes called, galvanic battery, has given place to the "cell" shown in figure II, where the two plates Z C are immersed in acidulated water within the vessel, and connected outside by the wire W. The zinc plate has a positive and the copper a negative charge. The positive current flows from the zinc to the copper inside the cell and from the copper to the zinc outside the cell, as shown by the arrows. It thus makes a complete round, which is called the voltaic "circuit," and if the circuit is broken anywhere it will not flow at all. The positive electricity of the zinc appears to traverse the liquid to the copper, from which it flows through the wire to the zinc. The effect is that the end of the wire attached to the copper is positive (+), and called the positive "pole" or electrode, while the end attached to the zinc is negative (-), and called the negative pole or electrode. "A simple and easy way to avoid confusion as to the direction of the current, is to remember that the POSITIVE current flows FROM the COPPER TO the ZINC at the point of METALLIC contact." The