You are here

قراءة كتاب The Popular Science Monthly, October, 1900 Vol. 57, May, 1900 to October, 1900

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Popular Science Monthly, October, 1900
Vol. 57, May, 1900 to October, 1900

The Popular Science Monthly, October, 1900 Vol. 57, May, 1900 to October, 1900

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 2

of nations, or on the thoughts and doings of the person whose character he is depicting.

In scientific research, also, diligence and accuracy are fundamental qualities. By their application new facts are discovered and tabulated, their order of succession is ascertained and a wider and more intimate knowledge of the processes of nature is acquired. But to decide on their true significance a well-balanced mind and the exercise of prolonged thought and reflection are needed. William Harvey, the father of exact research in physiology, in his memorable work, ‘De Motu Cordis et Sanguinis,’ published more than two centuries ago, tells us of the great and daily diligence which he exercised in the course of his investigations, and the numerous observations and experiments which he collated. At the same time he refers repeatedly to his cogitations and reflections on the meaning of what he had observed, without which the complicated movements of the heart could not have been analyzed, their significance determined and the circulation of the blood in a continuous stream definitely established. Early in the present century, Carl Ernst von Baer, the father of embryological research, showed the importance which he attached to the combination of observation with meditation by placing side by side on the title page of his famous treatise ‘Ueber Entwickelungsgeschichte der Thiere’ (1828) the words Beobachtung und Reflexion.

Though I have drawn from biological science my illustrations of the need of this combination, it must not be inferred that it applies exclusively to one branch of scientific inquiry; the conjunction influences and determines progress in all the sciences, and when associated with a sufficient touch of imagination, when the power of seeing is conjoined with the faculty of foreseeing, of projecting the mind into the future, we may expect something more than the discovery of isolated facts; their coördination and the enunciation of new principles and laws will necessarily follow.

Scientific method consists, therefore, in close observation, frequently repeated so as to eliminate the possibility of erroneous seeing; in experiments checked and controlled in every direction in which fallacies might arise; in continuous reflection on the appearances and phenomena observed, and in logically reasoning out their meaning and the conclusions to be drawn from them. Were the method followed out in its integrity by all who are engaged in scientific investigations, the time and labor expended in correcting errors committed by ourselves or by other observers and experimentalists would be saved, and the volumes devoted annually to scientific literature would be materially diminished in size. Were it applied, as far as the conditions of life admit, to the conduct and management of human affairs, we should not require to be told, when critical periods in our welfare as a nation arise, that we shall muddle through somehow. Recent experience has taught us that wise discretion and careful provision are as necessary in the direction of public affairs as in the pursuit of science, and in both instances, when properly exercised, they enable us to reach with comparative certainty the goal which we strive to attain.

IMPROVEMENTS IN MEANS OF OBSERVATION.

While certain principles of research are common to all the sciences, each great division requires for its investigation specialized arrangements to insure its progress. Nothing contributes so much to the advancement of knowledge as improvements in the means of observation, either by the discovery of new adjuncts to research, or by a fresh adaptation of old methods. In the industrial arts, the introduction of a new kind of raw material, the recognition that a mixture or blending is often more serviceable than when the substances employed are uncombined, the discovery of new processes of treating the articles used in manufactures, the invention of improved machinery, all lead to the expansion of trade to the occupation of the people, and to the development of great industrial centers. In science, also, the invention and employment of new and more precise instruments and appliances enable us to appreciate more clearly the signification of facts and phenomena which were previously obscure, and to penetrate more deeply into the mysteries of nature. They mark fresh departures in the history of science, and provide a firm base of support from which a continuous advance may be made and fresh conceptions of nature can be evolved.

It is not my intention, even had I possessed the requisite knowledge, to undertake so arduous a task as to review the progress which has recently been made in the great body of sciences which lie within the domain of the British Association. As my occupation in life has required me to give attention to the science which deals with the structure and organization of the bodies of man and animals—a science which either includes within its scope or has intimate and widespread relations to comparative anatomy, embryology, morphology, zoölogy, physiology and anthropology—I shall limit myself to the attempt to bring before you some of the more important observations and conclusions which have a bearing on the present position of the subject. As this is the closing year of the century it will not, I think, be out of place to refer to the changes which a hundred years have brought about in our fundamental conceptions of the structure of animals. In science, as in business, it is well from time to time to take stock of what we have been doing, so that we may realize where we stand and ascertain the balance to our credit in the scientific ledger.

So far back as the time of the ancient Greeks it was known that the human body and those of the more highly organized animals were not homogeneous, but were built up of parts, the partes dissimilares (τὰ ἀνόμοια μέρη {ta anomoia merê}) of Aristotle, which differed from each other in form, color, texture, consistency and properties. These parts were familiarly known as the bones, muscles, sinews, blood-vessels, glands, brain, nerves and so on. As the centuries rolled on, and as observers and observations multiplied, a more and more precise knowledge of these parts throughout the animal kingdom was obtained, and various attempts were made to classify animals in accordance with their forms and structure. During the concluding years of the last century and the earlier part of the present, the Hunters, William and John, in our country, the Meckels in Germany, Cuvier and St. Hilaire in France, gave an enormous impetus to anatomical studies, and contributed largely to our knowledge of the construction of the bodies of animals. But whilst by these and other observers the most salient and, if I may use the expression, the grosser characters of animal organization had been recognized, little was known of the more intimate structure or texture of the parts. So far as could be determined by the unassisted vision, and so much as could be recognized by the use of a simple lens, had indeed been ascertained, and it was known that muscles, nerves and tendons were composed of threads or fibers, and the blood and lymph-vessels were tubes, that the parts which we call fasciæ and aponeuroses were thin membranes and so on.

Early in the present century, Xavier Bichat, one of the most brilliant men of science during the Napoleonic era in France, published his ‘Anatomie Générale,’ in which he formulated important general principles. Every animal is an assemblage of different organs, each of which discharges a function, and acting together, each in its own way, assists in the preservation of the whole. The organs are, as it were, special machines situated in the general building which constitutes the factory or body of the individual. But,

Pages