You are here
قراءة كتاب Five of Maxwell's Papers
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
can now alter in the least either the mass or the period of any one of them, we seem to have advanced along the path of natural knowledge to one of those points at which we must accept the guidance of that faith by which we understand that "that which is seen was not made of things which do appear."
One of the most remarkable results of the progress of molecular science is the light it has thrown on the nature of irreversible processes—processes, that is, which always tend towards and never away from a certain limiting state. Thus, if two gases be put into the same vessel, they become mixed, and the mixture tends continually to become more uniform. If two unequally heated portions of the same gas are put into the vessel, something of the kind takes place, and the whole tends to become of the same temperature. If two unequally heated solid bodies be placed in contact, a continual approximation of both to an intermediate temperature takes place.
In the case of the two gases, a separation may be effected by chemical means; but in the other two cases the former state of things cannot be restored by any natural process.
In the case of the conduction or diffusion of heat the process is not only irreversible, but it involves the irreversible diminution of that part of the whole stock of thermal energy which is capable of being converted into mechanical work.
This is Thomson's theory of the irreversible dissipation of energy, and it is equivalent to the doctrine of Clausius concerning the growth of what he calls Entropy.
The irreversible character of this process is strikingly embodied in Fourier's theory of the conduction of heat, where the formulae themselves indicate, for all positive values of the time, a possible solution which continually tends to the form of a uniform diffusion of heat.
But if we attempt to ascend the stream of time by giving to its symbol continually diminishing values, we are led up to a state of things in which the formula has what is called a critical value; and if we inquire into the state of things the instant before, we find that the formula becomes absurd.
We thus arrive at the conception of a state of things which cannot be conceived as the physical result of a previous state of things, and we find that this critical condition actually existed at an epoch not in the utmost depths of a past eternity, but separated from the present time by a finite interval.
This idea of a beginning is one which the physical researches of recent times have brought home to us, more than any observer of the course of scientific thought in former times would have had reason to expect.
But the mind of man is not, like Fourier's heated body, continually settling down into an ultimate state of quiet uniformity, the character of which we can already predict; it is rather like a tree, shooting out branches which adapt themselves to the new aspects of the sky towards which they climb, and roots which contort themselves among the strange strata of the earth into which they delve. To us who breathe only the spirit of our own age, and know only the characteristics of contemporary thought, it is as impossible to predict the general tone of the science of the future as it is to anticipate the particular discoveries which it will make.
Physical research is continually revealing to us new features of natural processes, and we are thus compelled to search for new forms of thought appropriate to these features. Hence the importance of a careful study of those relations between mathematics and Physics which determine the conditions under which the ideas derived from one department of physics may be safely used in forming ideas to be employed in a new department.
The figure of speech or of thought by which we transfer the language and ideas of a familiar science to one with which we are less acquainted may be called Scientific Metaphor.
Thus the words Velocity, Momentum, Force, &c. have acquired certain precise meanings in Elementary Dynamics. They are also employed in the Dynamics of a Connected System in a sense which, though perfectly analogous to the elementary sense, is wider and more general.
These generalized forms of elementary ideas may be called metaphorical terms in the sense in which every abstract term is metaphorical. The characteristic of a truly scientific system of metaphors is that each term in its metaphorical use retains all the formal relations to the other terms of the system which it had in its original use. The method is then truly scientific—that is, not only a legitimate product of science, but capable of generating science in its turn.
There are certain electrical phenomena, again, which are connected together by relations of the same form as those which connect dynamical phenomena. To apply to these the phrases of dynamics with proper distinctions and provisional reservations is an example of a metaphor of a bolder kind; but it is a legitimate metaphor if it conveys a true idea of the electrical relations to those who have been already trained in dynamics.
Suppose, then, that we have successfully introduced certain ideas belonging to an elementary science by applying them metaphorically to some new class of phenomena. It becomes an important philosophical question to determine in what degree the applicability of the old ideas to the new subject may be taken as evidence that the new phenomena are physically similar to the old.
The best instances for the determination of this question are those in which two different explanations have been given of the same thing.
The most celebrated case of this kind is that of the corpuscular and the undulatory theories of light. Up to a certain point the phenomena of light are equally well explained by both; beyond this point, one of them fails.
To understand the true relation of these theories in that part of the field where they seem equally applicable we must look at them in the light which Hamilton has thrown upon them by his discovery that to every brachistochrone problem there corresponds a problem of free motion, involving different velocities and times, but resulting in the same geometrical path. Professor Tait has written a very interesting paper on this subject.
According to a theory of electricity which is making great progress in Germany, two electrical particles act on one another directly at a distance, but with a force which, according to Weber, depends on their relative velocity, and according to a theory hinted at by Gauss, and developed by Riemann, Lorenz, and Neumann, acts not instantaneously, but after a time depending on the distance. The power with which this theory, in the hands of these eminent men, explains every kind of electrical phenomena must be studied in order to be appreciated.
Another theory of electricity, which I prefer, denies action at a distance and attributes electric action to tensions and pressures in an all-pervading medium, these stresses being the same in kind with those familiar to engineers, and the medium being identical with that in which light is supposed to be propagated.
Both these theories are found to explain not only the phenomena by the aid of which they were originally constructed, but other phenomena, which were not thought of or perhaps not known at the time; and both have independently arrived at the same numerical result, which gives the absolute velocity of light in terms of electrical quantities.
That theories apparently so fundamentally opposed should have so large a field of truth common to both is a fact the philosophical importance of which we cannot fully appreciate till we have reached a scientific altitude from which the true relation between