أنت هنا
قراءة كتاب Darwin, and After Darwin, Volume 3 of 3 Post-Darwinian Questions: Isolation and Physiological Selection
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Darwin, and After Darwin, Volume 3 of 3 Post-Darwinian Questions: Isolation and Physiological Selection
tag="{http://www.w3.org/1999/xhtml}a">[4].
Now, in order to appreciate the unsurpassed importance of isolation as one of the three basal principles of organic evolution, let us begin by considering the discriminate species of it, or Homogamy.
To state the case in the most general terms, we may say that if the other two basal principles are given in heredity and variability, the whole theory of organic evolution becomes neither more nor less than a theory of homogamy—that is, a theory of the causes which lead to discriminate isolation, or the breeding of like with like to the exclusion of unlike. For the more we believe in heredity and variability as basal principles of organic evolution, the stronger must become our persuasion that discriminate breeding leads to divergence of type, while indiscriminate breeding leads to uniformity. This, in fact, is securely based on what we know from the experience supplied by artificial selection, which consists in the intentional mating of like with like to the exclusion of unlike.
The point, then, which in the first instance must be firmly fastened in our minds is this:—so long as there is free intercrossing, heredity cancels variability, and makes in favour of fixity of type. Only when assisted by some form of discriminate isolation, which determines the exclusive breeding of like with like, can heredity make in favour of change of type, or lead to what we understand by organic evolution.
Now the forms of discriminate isolation, or homogamy, are very numerous. When, for example, any section of a species adopts somewhat different habits of life, or occupies a somewhat different station in the economy of nature, homogamy arises within that section. There are forms of homogamy on which Darwin has laid great stress, as we shall presently find. Again, when for these or any other reasons a section of a species becomes in any small degree modified as to form or colour, if the species happens to be one where any psychological preference in pairing can be exercised—as is very generally the case among the higher animals—exclusive breeding is apt to ensue as a result of such preference; for there is abundant evidence to show that, both in birds and mammals, sexual selection is usually opposed to the intercrossing of dissimilar varieties. Once more, in the case of plants, intercrossing of dissimilar varieties may be prevented by any slight difference in their seasons of flowering, of topographical stations, or even, in the case of flowers which depend on insects for their fertilization, by differences in the instincts and preferences of their visitors.
But, without at present going into detail with regard to these different forms of discriminate isolation, there are still two others, both of which are of much greater importance than any that I have hitherto named. Indeed, these two forms are of such immeasurable importance, that were it not for their virtually ubiquitous operation, the process of organic evolution could never have begun, nor, having begun, continued.
The first of these two forms is sexual incompatibility—either partial or absolute—between different taxonomic groups. If all hares and rabbits, for example, were as fertile with one another as they are within their own respective species, there can be no doubt that sooner or later, and on common areas, the two types would fuse into one. And similarly, if the bar of sterility could be thrown down as between all the species of a genus, or all the genera of a family, not otherwise prevented from intercrossing, in time all such species, or all such genera, would become blended into a single type. As a matter of fact, complete fertility, both of first crosses and of their resulting hybrids, is rare, even as between species of the same genus; while as between genera of the same family complete fertility does not appear ever to occur; and, of course, the same applies to all the higher taxonomic divisions. On the other hand, some degree of infertility is not unusual as between different varieties of the same species; and, wherever this is the case, it must clearly aid the further differentiation of those varieties. It will be my endeavour to show that in this latter connexion sexual incompatibility must be held to have taken an immensely important part in the differentiation of varieties into species. But meanwhile we have only to observe that wherever such incompatibility is concerned, it is to be regarded as an isolating agency of the very first importance. And as it is of a character purely physiological, I have assigned to it the name Physiological Isolation; while for the particular case where this general principle is concerned in the origination of specific types, I have reserved the name Physiological Selection.
The other most important form of discriminate isolation to which I have alluded is Natural Selection. To some evolutionists it has seemed paradoxical thus to regard natural selection as a form of isolation; but a little thought will suffice to show that such is really the most accurate way of regarding it. For, as Mr. Gulick says, "Natural selection is the exclusive breeding of those better adapted to the environment: ... it is a process in which the fittest are prevented from crossing with the less fitted, by the exclusion of the less fitted." Therefore it is, strictly and accurately, a mode of isolation, where the isolation has reference to adaptation, and is secured in the most effectual of possible ways—i.e. by the destruction of all individuals whose intercrossing would interfere with the isolation. Indeed, the very term "natural selection" shows that the principle is tacitly understood to be one of isolation, because this name was assigned to the principle by Darwin for the express purpose of marking the analogy that obtains between it and the intentional isolation which is practised by breeders, fanciers, and horticulturists. The only difference between "natural selection" and "artificial selection" consists in this—that under the former process the excluded individuals must necessarily perish, while under the latter they need not do so. But clearly this difference is accidental: it is in no way essential to the process considered as a process of discriminate isolation. For, as far as homogamous breeding is concerned, it can matter nothing whether the exclusion of the dissimilar individuals is effected by separation or by death.
Natural selection, then, is thus unquestionably a form of isolation of the discriminate kind; and therefore, notwithstanding its unique importance in certain respects, considered as a principle of organic evolution it is less fundamental—and also less extensive—than the principle of isolation in general. In other words, it is but a part of a much larger whole. It is but a particular form of a general principle, which, as just shown, presents many other forms, not only of the discriminate, but likewise of the indiscriminate kind. Or, reverting to the terminology of logic, it is a sub-species of the species Homogamy, which in its turn is but a constituent part of the genus Isolation.
So much then for homogamy, or isolation of the discriminate order. Passing on now to apogamy, or isolation of the indiscriminate kind, we may well be disposed, at first sight, to conclude that this kind of isolation can count for nothing in the process of evolution. For if the fundamental importance of isolation in the production of organic forms be due to its segregation of like with like, does it not follow that any form of isolation which is indiscriminate must fail to supply the very condition on which all the forms of discriminate isolation depend for their efficacy in the causing of organic evolution? Or, to return to our