أنت هنا

قراءة كتاب Darwin, and After Darwin, Volume 3 of 3 Post-Darwinian Questions: Isolation and Physiological Selection

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Darwin, and After Darwin, Volume 3 of 3
Post-Darwinian Questions: Isolation and Physiological Selection

Darwin, and After Darwin, Volume 3 of 3 Post-Darwinian Questions: Isolation and Physiological Selection

تقييمك:
0
لا توجد اصوات
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 6

the most prominent as it is the most original feature of his essay, "In the first place, every new form of Segregation[11] that now appears depends on, and is superimposed upon, forms of Segregation that have been previously induced; for when Negative Segregation arises [i. e. isolation due to mutual sterility], and the varieties of a species become less and less fertile with one another, the complete infertility that has existed between them and some other species does not disappear, nor does the Positive Segregation cease [i. e. any other form of isolation previously existing].... In the second place, whenever Segregation is directly produced by some quality of the organism, variations that possess the endowment in a superior degree will have a larger share in producing the segregated forms of the next generation, and accordingly the segregative endowment of the next generation will be greater than that of the present generation; and so with each successive generation the segregation will become increasingly complete." And to this it may be added, in the third place, that where the segregation (isolation) is due to the external conditions of life under which the organism is placed, or where it is due to natural selection simultaneously operating in divergent lines of evolution, the same remarks apply. Hence it follows that discriminate isolation is, in all its forms, cumulative.

4. The next point to be noted is, that the cumulative divergence of type thus induced can take place only in as many different lines as there are different cases of isolation. This is a point which Mr. Gulick has not expressly noticed; but it is one that ought to be clearly recognized. Seeing that isolation secures the breeding of similar forms by exclusion (immediate or eventual) of those which are dissimilar, and that only in as far as it does this can it be a factor in organic evolution, it follows that the resulting segregation, even though cumulative, can only lead to divergence of organic types in as many directions as there are cases of isolation. For any one group of intergenerants only serial transformation is possible, even though the transformation be cumulative through successive generations in the single line of change. But there is always a probability that during the course of such serial transformation in time, some other case of isolation may supervene, so as to divide the previously isolated group of intergenerants into two or more further isolated groups. Then, of course, opportunity will be furnished for divergent transformation in space—and this in as many different lines as there are now different homogamous groups.

That this must be so is further evident, if we reflect that the evolutionary power of isolation depends, not only on the preventing of intercrossing between the isolated portion of a species and the rest of that species, but also upon the permitting of intercrossing between all individuals of the isolated portion, whereby the peculiar average of qualities which they as a whole present may be allowed to assert itself in their progeny—or, if the isolation has been from the first discriminate, whereby the resulting homogamy may thus be allowed to assert itself. Hence any one case of either species of isolation, discriminate or indiscriminate, can only give rise to what Mr. Gulick has aptly called "monotypic evolution," or a chain-like series of types arising successively in time, as distinguished from what he has called "polytypic evolution," or an arborescent multiplication of types arising simultaneously in space.

For example, let us again take the geographical form of isolation. Where a single small intergenerant group of individuals is separated from the rest of its species—say, on an oceanic island—monotypic evolution may take place through a continuous and cumulative course of independent variation in a single line of change: all the individuals composing any one given generation will closely resemble one another, although the type may be progressively altering through a long series of generations. But if the original species had had two small colonies separated from itself (one on each of two different islands, so giving rise to two cases of isolation), then polytypic evolution would have ensued to the extent of there having been two different lines of evolution going on simultaneously (one upon each of the two islands concerned). Similarly, of course, if there had been three or four such colonies, there would have been three or four divergent lines of evolution, and so on.

5. In the cases of isolation just supposed there is only one form of isolation; and it is thus shown that under one form of isolation there may be as many lines of divergence as there are separate cases of such isolation. But now suppose that there are two or more forms of isolation—for instance, that on the same oceanic island the original colony has begun to segregate into secondary groups under the influence of natural selection, sexual selection, physiological selection, or any of the other forms of isolation—then there will be as many lines of divergent evolution going on at the same time (and here on the same area) as there are forms of isolation affecting the oceanic colony. And this because each of the forms of isolation has given rise to a different case of isolation.

Now, inasmuch as different forms of isolation, when thus superadded one to another, constitute different cases of isolation, we may lay down the following general law as applying to all the forms of isolation—namely, The number of possible directions in which divergent evolution can occur, is never greater than, though it may be equal to, the number of cases of efficient isolation—or the number of efficiently separated groups of intergenerants.

6. We have now to consider with some care the particular and highly important form of isolation that is presented by natural selection. For while this form of isolation resembles all the other forms of the discriminate kind in that it secures homogamy, there are two points in which it differs from all of them, and one point in which it differs from most of them.

Natural selection differs from all the other known forms of isolation (whether discriminate or indiscriminate) in that it has exclusive reference to adaptations on the one hand, and, on the other hand, necessitates not only the elimination, but the destruction of the excluded individuals. Again, natural selection differs from most of the other forms of isolation in that, unless assisted by some other form, it can never lead to polytypic, but only to monotypic evolution. The first two points of difference are here immaterial; but the last is one of the highest importance, as we shall immediately perceive.

In nearly all the other forms of isolation, polytypic or divergent evolution may arise under the influence of that form alone, or without the necessary co-operation of any other form. This we have already seen, for example, in regard to geographical isolation, under which there may be as many different lines of transmutation going on simultaneously as there are different cases of isolation—say, in so many different oceanic islands. Again, in regard to physiological isolation the same remark obviously applies; for it is evident that even upon the same geographical area there may be as many different lines of transmutation going on simultaneously as there are cases of this form of isolation. The bar of

الصفحات