You are here

قراءة كتاب Hemp Hurds as Paper-Making Material

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Hemp Hurds as Paper-Making Material

Hemp Hurds as Paper-Making Material

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 5

presents new features which should receive investigation before larger sized tests are undertaken.

The advantages of cooperative mill tests are many, among which may be mentioned the counsel and advice of the mill management and employees, the services of specialized and skilled labor, facilities for comparing the processes and the results of tests with commercial processes and results, and the use of commercial or semicommercial types and sizes of machinery. Tests conducted in this manner and on this scale are of a different quality than is possible in those conducted in a laboratory, and the results are susceptible of commercial interpretation with a fair degree of reliability. It is found, in general, that the cost of securing such equipment and service for a complete and comprehensive test does not exceed $500, while the installation of an equally satisfactory equipment alone would cost at least $50,000 and in many cases very much more. Tests conducted in this manner constitute a direct demonstration to the manufacturer, and the results obtained are found to carry more weight when presented to other manufacturers for consideration.

-13- It is well known that the method of conducting tests necessarily varies with the size of the test. In the matter of yield determination, for example, laboratory tests may be on such a small scale that the weighing and sampling of the resulting cellulose fibers may be conducted by means of chemical laboratory apparatus and analytical balance, while in tests involving a matter of 5 to 10 pounds of material larger and different types of equipment are necessary. When the tests are so increased in size as to employ 300 or 400 pounds, still other types of equipment are necessary for the treatment of the material and for a determination of the yield of fiber. In tests involving tons of material the equipment involves the use of machines. Accuracy in degree of control and in results will vary materially with the size of the test. As the size of the test increases, certain factors will vary in a beneficial manner, while others will vary in a detrimental manner, so it is a question for each investigator to decide, after taking all factors into consideration, as to the size of test which will give the most satisfactory results. In work of this nature it is found, on the whole, that better results are obtained in large tests, although the control of the factors and the determination of the yield of fiber are more difficult than in smaller tests.

In the tests described in this bulletin, the Department of Agriculture employed a rotary digester of its own design,[2] comprising a shell 5 feet 5 inches in length by 4 feet in diameter, capable of holding about 300 pounds of air-dry hurds. It is believed that a test of this size is large enough to give satisfactory results and that the results are susceptible of commercial interpretation, while at the same time they are sufficiently small for complete control and to afford fiber-yield figures which are both accurate and reliable. Two such rotary charges gave enough fiber for one complete paper-making test.

OPERATIONS INVOLVED IN A TEST.

A complete test on hurds comprises seven distinct operations, and the method will be described, operation by operation, in the order in which they were conducted.

Sieving.—The hurds for the first test were not sieved to remove sand and dirt, but the resulting paper was so dirty that sieving was practiced in all subsequent tests. The hurds were raked along a horizontal galvanized-iron screen, 15 feet long and 3 feet wide, with 11½ meshes per linear inch, the screen being agitated by hand from below. Various amounts of dirt and chaff could be removed, depending on the degree of action, but it was found that if much more than 3 per cent of the material was removed it consisted chiefly of fine pieces of wood with practically no additional sand or dirt; in most of the tests, therefore, the material was screened so as to remove -14- approximately 3 per cent. It became apparent that a finer screen would probably serve as well and effect a saving of small but good hurds.

Cooking.—Cooking is the technical term for the operation by which fibrous raw materials are reduced to a residue of cellulose pulp by means of chemical treatment. In these tests about 300 pounds of hurds were charged into the rotary with the addition of a caustic-soda solution, such as is regularly employed in pulp mills and which tested an average of 109.5 grams of caustic soda per liter, or 0.916 pound per gallon, and averaged 85 per cent causticity. Sufficient caustic solution was added to furnish 25 or 30 per cent of actual caustic soda, calculated on the bone-dry weight of hurds in the charge. After closing the rotary head, it was started rotating at the rate of one-half revolution per minute, and in about five minutes steam at 120 pounds per square inch was admitted at such a rate that the charge was heated in one hour to 170° C., which is the theoretical equivalent of 100 pounds of steam pressure per square inch. It was found, however, that when the temperature reached 170° C. the pressure was usually 115 or 120 pounds instead of 100 pounds, due to air and gases inclosed in the rotary. At this point the rotary was stopped and steam and air relieved until the pressure dropped to 100 pounds, or a solid steam pressure. The temperature was maintained at this point for the number of hours required to reduce the hurds, which was found to be about five, after which the rotary was stopped and steam relieved until the pressure was reduced to zero, when the head was removed and the stock was emptied into a tank underneath, measuring 5½ by 6 by 2 feet deep, where it was drained and washed. Samples of waste soda solution or "black liquor," which were taken from some of the "cooks" for analysis, were drawn while the stock was being thus emptied into the drainer.

Determination of yield.—For determining the yield of cellulose fiber the stock in the drain tank was washed with water until free from waste soda solution, when, by means of a vacuum pump communicating with the space between the bottom and the false perforated bottom, the water was sucked from the stock, leaving the fiber with a very uniform moisture content throughout its entire mass and in a condition suitable for removing, sampling, and weighing for a yield determination. Tests have shown that it is possible to sample and calculate the yield of bone-dry fiber within 0.05 per cent of the actual amount.

It has been found that stocks from different materials vary greatly in their ability to mat in the drain tank, thereby enabling a good vacuum to be obtained, some stocks permitting a 25-inch vacuum to be obtained, while others will not permit more than 5 inches. For this reason the moisture content of the stock will vary from 65 to 85 per cent.

-15- Washing and bleaching.—Washing and bleaching were performed for the purpose of bleaching the brown-colored cooked stock to a white product, since it was regarded as highly probable that the fiber would be suitable for book-paper manufacture. The colored stock was charged into a 400-pound beating and washing engine of regular construction and washed about one hour, the cylinder washer being covered with 60-mesh wire cloth in order to remove fine loose dirt and chemical residues. The washer was then raised, the stock heated by steam to about 40° C., and a solution of commercial bleaching powder was added in the quantity judged to be necessary, after which the stock was pumped to a large wooden tank, to remain and bleach over night. If the stock was bleached sufficiently white it was drained and washed from bleach residues, and if not more

Pages