You are here

قراءة كتاب Hemp Hurds as Paper-Making Material

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Hemp Hurds as Paper-Making Material

Hemp Hurds as Paper-Making Material

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 8

No. 141 was made from the stock of cooks Nos. 308 and 309 in practically the same manner as run No. 140. The stock was washed and brushed one hour, bleached (the record of the amount of bleach was lost), made into a furnish of 14.7 per cent of sulphite and 85.3 per cent of hurd stock, loaded with 14.9 per cent of clay, sized with 1.26 per cent of resin size, given one hour at a medium brush, tinted, and run on to the machine. The Jordan refiner was able to reduce the wood shives to a somewhat greater degree than in previous runs and was held at a medium brush. The stock acted well on the machine and produced a sheet of better quality than any preceding, with the exception of the color, which was due to using too small a quantity of blue.

Among the cooks made for run No. 142 are Nos. 312 and 313, in which the concentration of the caustic soda was raised to 113 and 116 grams per liter and the percentage employed was also increased. In spite of these increases the stock from these two cooks did not -20- show any appreciable improvement when dumped from the rotary. Stock from cooks Nos. 310, 311, and 312 was given a medium brush and washing of one hour, bleached with 10.95 per cent of bleach, made into a furnish consisting of 15.2 per cent of sulphite and 84.8 per cent of hurd stock, loaded with 15.2 per cent of clay, sized with 1.28 per cent of resin size, given a medium brush for one hour, tinted, and pumped to the stock chest. Stock from cooks Nos. 313 and 314 was treated in exactly the same manner, except that 11.4 per cent of bleach was used. It was pumped to the stock chest and mixed with the furnished stock from cooks Nos. 310, 311, and 312. A medium Jordan brush was given the stock and it acted well on the paper machine, which was speeded to 75 feet per minute. There seems to be a tendency in the hurd stock to crush a little at the "dandy roll," and although the marks are not removed by the calender stack which was employed in those tests it was found that one "nip" on the supercalenders renders them practically imperceptible and it is believed that the proper size and weight of calender stack would entirely remove these marks. All of the papers produced up to this point are somewhat lacking in the bulk desired in a book paper; therefore, in the two following runs soda-poplar stock was included in the furnishes.

In run No. 143 stock from cooks Nos. 315 and 316 was given a medium brush and washing for one hour and was medium brushed for one hour more, bleached with 11.3 per cent of bleach assisted with one-half pint of oil of vitriol, made into a furnish of 16.5 per cent of sulphite, 22.3 per cent of soda poplar, and 61.2 per cent of hurd stock, loaded with 22 per cent of clay, sized with 1.38 per cent of resin size, given a hard brush for one hour, tinted very strongly, and pumped to the stock chest. This stock was beaten to a greater extent than in previous runs. The stock was run on the paper machine at a speed of 75 feet per minute, using a medium Jordan brush, and no trouble whatsoever was experienced. Not over 2 pounds of "broke" was produced during the whole run, and that was in the "threading" of the machine. The color of the sheet is entirely satisfactory for many uses. The wood shives apparently were reduced to a satisfactory degree. Experienced paper makers commented very favorably on the running of this furnish and the quality of the paper produced.

Run No. 144 was intended as a duplicate of run No. 143. Stock from cooks Nos. 317 and 318 was given a medium brush and washing for one hour and a further medium brush of one hour, bleached with 11.4 per cent of bleach, and made into a furnish composed of 15.5 per cent of sulphite, 23.5 per cent of soda poplar, and 61 per cent of hurd stock, loaded with 21.4 per cent of clay, sized with 1.17 per cent of resin size, hard brushed for one hour, tinted by the expert colorer -21- of the company, and pumped to the stock chest. Stock from cooks Nos. 319 and 320 was treated in exactly the same manner except that the stock was bleached with 12.1 per cent of bleach and pumped to the stock chest to mix with the former furnish. The stock acted very well on the machine, which was speeded to 75 feet per minute, with the Jordan refiner set at a medium brush. The sheet is as good, if not better, than that of run No. 143, and it is also a good illustration of the extent to which proper tinting will enhance the general appearance of a paper. The poor appearance of the samples of previous runs is due largely to lack of proper tinting. Various degrees of whiteness, however, are demanded by the trade.

COMPARISON OF THE TESTS AND COMMERCIAL PRACTICE.

In work of this nature and on this scale it is practically impossible to arrive at a cost figure which would be susceptible of commercial interpretation, and in this preliminary publication nothing will be attempted beyond a comparison of the process used with the hurds with that process commercially applied to poplar wood. The process last used with the hurds should not be regarded as final, satisfactory, or most suitable, as it has been shown that progress was being made up to the conclusion of the work.

In comparing the method of using hurds with the method of handling poplar wood, a difference is apparent on the delivery of raw material at the mill. Ordinarily, poplar is received at the mill in the form of logs about 4 feet in length, which may be stored in piles in the open. Hurds very likely would be received baled, and it would seem advisable to store them under cover for the following reasons: (a) Baled hurds would probably absorb and retain more water during wet weather than logs of wood, thereby causing excessive dilution of the caustic liquor; (b) prolonged excessive dampness might create heating and deterioration unless the hemp were properly retted; (c) wet hurds could not be sieved free from sand and chaff. Should further work show that the first two reasons need not be taken into consideration, the third objection might be overcome by sieving the hurds before baling. Even then, it is probable that baled hurds stored in the open would accumulate and retain considerable dirt from factory chimneys, locomotives, and wind. Checked pulp wood exposed in the open invariably suffers from these causes.

In the preparation of the raw material for the digesters there is likewise considerable difference between hurds and poplar wood. The former apparently requires only a moderate sieving to remove sand and chaff, which operation doubtless would require only a small amount of labor and the installation of some simple machinery of low power consumption. In preparing poplar for digestion, the -22- 4-foot logs are chipped by a heavy, comparatively expensive chipper of high power consumption, after which the chips are sorted by sieving, the large pieces being rechipped. There would be a noteworthy difference in the installation, operating, and depreciation costs of the two equipments, and this difference would counterbalance to a considerable extent the difference in cost of raw material storage.

It is possible that in the use of the chip loft more care would have to be exercised in using hurds because of the tendency of the bast fiber to cause lodgments, but this should not be considered a serious difficulty.

The weight of hurds which are capable of being charged into a rotary is a decidedly unfavorable factor. The weight of a cubic foot of hurds varies somewhat with the proportion of bast fiber, but averages about 5.4 pounds, which, compared with a cubic foot of poplar chips at 8.93 pounds, represents a digester charge of 60.5 per cent of the weight of a poplar-wood charge, or, in terms of fiber capacity, the hurds charge would yield 38.6 per cent as much fiber as the wood charge. The hurds upon being baled for transportation may be broken and crushed to such a degree that the weight of the charge may be increased, and

Pages