قراءة كتاب The Dyeing of Cotton Fabrics: A Practical Handbook for the Dyer and Student

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Dyeing of Cotton Fabrics: A Practical Handbook for the Dyer and Student

The Dyeing of Cotton Fabrics: A Practical Handbook for the Dyer and Student

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 8

radicles in the dye-stuffs can be definitely stated. While the constitution of the dye-stuff is of importance, that of the substance being dyed is also a factor in the question of the conditions under which it is applied.

In dealing with the first of the above groups of dyes, the direct dyes, the colourist is somewhat at a loss to explain in what manner the combination with the cotton fibre is brought about. The affinity of cellulose for dyes appears to be so small and its chemical activities so weak, that to assume the existence of a reaction between the dye-stuff and the fibre, tending to the formation of a colour lake, seems to be untenable. Then, again, the chemical composition and constitution of the dyes of this group are so varied that an explanation which would hold good for one might not do so for another. The relative fastness of the dyes against washing and soaping precludes the idea of a merely mechanical absorption of the dye by the fibre; on the other hand the great difference in the fastness to soaping and light between the same dyes on cotton and wool would show that there has not been a true formation of colour lake.

The dyeing of cotton with the second group of dyes is more easily explained. The cotton fibre has some affinity for the tannic acid used in preparing it and absorbs it from the mordanting bath. The tannic acid has the property of combining with the basic constituents of these dyes and forms a true colour lake, which is firmly fixed on the fibre. The colour lake can be formed independently of the fibre by bringing the tannic acid and the dye into contact with one another.

In the case of the dyes of the third group, the formation of a colour lake between the metallic oxide and the colouring matter can be readily demonstrated. In dyeing with these colours the cotton is first of all impregnated with the mordanting oxide, and afterwards placed in the dye-bath, the mordant already fixed on the fibre then reacts with the dye, and absorbs it, thus dyeing the cotton. To some extent the dyeing of cotton with the basic dyes of the second group and the mordant dyes of the third group is almost a mechanical one, the cotton fibre taking no part in it from a chemical point of view, but simply playing the part of a base or foundation on which the colour lake may be formed. In the case of the dyes of the fourth group, there being no chemical affinity of the cotton known for them, these dyes cannot be used in a successful manner; cotton will, if immersed in a bath containing them, more or less mechanically take up some of the colour from the liquor, but such colour can be almost completely washed out again, hence these dyes are not used in cotton dyeing, although many attempts have been made to render them available.

Indigo is a dye-stuff that stands by itself. Its combination with the cotton fibre is chiefly of a physical rather than a chemical nature; it does not form colour lakes in the same way as Alizarine and Magenta do.

Cellulose can be dissolved by certain metallic solutions and preparations:—

(1) Zinc Chloride.—When cotton or other form of cellulose is heated with a strong solution, 40 to 50 per cent., it slowly dissolves to a syrupy liquid. On diluting this liquid with water the cellulose is thrown down in a gelatinous form, but more or less hydrated, and containing some zinc oxide, 18 to 25 per cent., in combination.

(2) Zinc Chloride and Hydrochloric Acid.—When zinc chloride is dissolved in hydrochloric acid a liquid is ob

tained which dissolves cellulose; on dilution the cellulose is re-precipitated in a hydrated form. It is worth noting that the solution is not a stable one: on keeping, the cellulose changes its character and undergoes hydrolysis to a greater or less extent.

(3) Ammoniacal Copper.—When ammonia is added to a solution of copper sulphate, there is formed at first a pale blue precipitate of copper hydroxide, which on adding excess of ammonia dissolves to a deep blue solution—a reaction highly characteristic of copper. The ammoniacal copper solution thus prepared has, as was first observed by John Mercer, the property of dissolving cellulose fairly rapidly, even in the cold.

If instead of preparing the ammoniacal copper solution in the manner indicated above, which results in its containing a neutral ammonium salt, the copper hydroxide be prepared separately and then dissolved in ammonia a solution is obtained which is stronger in its action.

The cupra-ammonium solutions of cellulose are by no means stable but change on keeping. When freshly prepared, the cellulose may be precipitated from them almost unchanged by the addition of such bodies as alcohol, sugar and solutions of neutral alkaline salts. On keeping the cellulose undergoes more or less hydrolysis or even oxidation, for it has been observed that oxycellulose is formed on prolonged digestion of cellulose with cupra-ammonium solutions, while there is formed a fairly large proportion of a nitrite.

On adding lead acetate to the cupra-ammonium solution of cellulose, a compound of lead oxide and cellulose of somewhat variable composition is precipitated. It is of interest also to note that on adding metallic zinc to the cupra-ammonium solution the copper is thrown out and a solution containing zinc is obtained.

This action of cupra-ammonium solutions on cellulose has

been made the basis for the production of the "Willesden" waterproof cloths. Cotton cloths or paper are passed through these solutions of various degrees of strength according to requirements, they are then passed through rollers which causes the surface to become more compact. There is formed on the surface of the goods a deposit of a gelatinous nature which makes the surface more compact, and the fabric becomes waterproof in character while the copper imparts to them a green colour and acts as a preservative. The "Willesden" fabrics have been found very useful for a variety of purposes.


CHAPTER II.

SCOURING AND BLEACHING OF COTTON.

Preparatory to the actual dyeing operations, it is necessary to treat cotton in any condition—loose cotton, yarn, or piece—so that the dyeing shall be properly done. Raw cotton contains many impurities, mechanical and otherwise; cotton yarns accumulate dirt and impurities of various kinds during the various spinning operations, while in weaving a piece of cotton cloth it is practically impossible to keep it clean and free from dirt, etc. Before the cotton can be dyed a perfectly level and uniform shade, free from dark spots or light patches, these impurities must be removed, and therefore the cotton is subjected to various scouring or cleansing operations with the object of effecting this end. Then again cotton naturally, especially Egyptian cotton, contains a small quantity of a brown colouring matter, and this would interfere with the purity of any pale tints of blue, rose, yellow, green, etc., which may be dyed on the cotton, and so it becomes necessary to remove this colour and render the cotton quite bright. This is commonly called "bleaching". It is these preparatory processes that will be dealt with in this chapter.

Scouring Cotton.—When dark shades—blacks, browns, olives, sages, greens, etc., are to be dyed it is not needful to subject the cotton to a bleaching operation, but simply to a scouring by boiling it with soda or caustic soda. This is very often-carried out in the same machine as the goods will

be dyed in; thus, for instance, in the case of pieces, they would be charged in a jigger, this would be filled with a liquor made from soda or from caustic

Pages