You are here

قراءة كتاب Transactions of the American Society of Civil Engineers, Vol. LXVIII, Sept. 1910 The New York Tunnel Extension of the Pennsylvania Railroad. The North River Tunnels. Paper No. 1155

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Transactions of the American Society of Civil Engineers, Vol. LXVIII, Sept. 1910
The New York Tunnel Extension of the Pennsylvania Railroad.
The North River Tunnels. Paper No. 1155

Transactions of the American Society of Civil Engineers, Vol. LXVIII, Sept. 1910 The New York Tunnel Extension of the Pennsylvania Railroad. The North River Tunnels. Paper No. 1155

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 4

tag="{http://www.w3.org/1999/xhtml}a">PLATE XXX.Plan of Weehawken Surface Plant and of Yard and Offices at Manhattan Shaft
Click to view larger image.

High-Pressure Compressors.—There was one high-pressure compressor at each plant. Each consisted of two duplex air cylinders fitted to a cross-compound, Corliss-Bass, steam engine. The two steam cylinders were 14 and 26 in. in diameter, respectively, and the air cylinders were 14¼ in. in diameter and had a 36-in. stroke. The air cylinder was water-jacketed with salt water supplied from the circulating water pumps.

The capacity was about 1,100 cu. ft. of free air per min. when running at 85 rev. per min. and using intake air at normal pressure, but, when receiving air from the low-pressure compressors at a pressure of 30 lb. per sq. in., the capacity was 3,305 cu. ft. of free air per min.; receiving air at 50 lb. per sq. in., the capacity would have been 4,847 cu. ft. of free air per min. This latter arrangement, however, called for more air than the low-pressure compressors could deliver. With the low-pressure compressor running at 125 rev. per min. (its maximum speed), it could furnish enough air at 43.8 lb. per sq. in. to supply the high-pressure compressor running at 85 rev. per min. (its maximum speed); and, with the high-pressure compressor delivering compressed air at 150 lb., the combined capacity of the arrangement would have been 4,389 cu. ft. of free air per min.

The air passed through a receiver, 4 ft. 6 in. in diameter and 12 ft. high, tested under a water pressure of 225 lb. per sq. in., before being sent through the distributing pipes.

Hydraulic Power Pumps.—At each power-house there were three hydraulic power pumps to operate the tunneling shields. One pump was used for each tunnel, leaving the third as a stand-by. The duplex steam cylinders were 15 in. in diameter, with a 10-in. stroke; the duplex water rams were 2⅛ in. in diameter with a 10-in. stroke. The pumps were designed to work up to 6,000 lb. per sq. in., but the usual working pressure was about 4,500 lb. The piping, which was extra heavy hydraulic, was connected by heavy cast-steel screw coup lings having a hexagonal cross-section in the middle to enable tightening to be done with a bolt wrench. The piping was designed to withstand a pressure of 5,500 lb. per sq. in.

Electric Generators.—At each plant there were two electric generators supplying direct current for both lighting and power, at 240 volts, through a two-wire system of mains. They were of Type M-P, Class 6, 100 kw., 400 amperes, 250 rev. per min., 240 volts no load and 250 volts full load. They were connected direct to 10 by 20 by 14-in., center-crank, tandem-compound, engines of 150 h.p. at 250 rev. per min. A switch-board, with all the necessary fuses, switches, and meters, was provided at each plant.

Lubrication.—In the lubricating system three distinct systems were used, each requiring its own special grade of oil.

The journals and bearings were lubricated with ordinary engine oil by a gravity system; the oil after use passed through a "White Star" filter, and was pumped into a tank about 15 ft. above the engine-room floor.

The low-pressure air cylinders were lubricated with "High Test" oil, having a flash point of 600° Fahr. The oil was forced from a receiving tank into an elevated tank by high-pressure air. When the tank was full the high-pressure air was turned off and the low-pressure air was turned on, in this way the air pressure in the oil tank equalled that in the air cylinder being lubricated, thus allowing a perfect gravity system to exist.

The steam cylinders and the high-pressure air cylinders were fed with oil from hand-fed automatic lubricators made by the Detroit Lubrication Company, Detroit, Mich.

"Steam Cylinder" oil was used for the steam cylinders and "High Test" oil (the same as used for the low-pressure air cylinders) for the high-pressure air cylinders. The air cylinder and steam cylinder lubricators were of the same kind, except that no condensers were necessary. The steam cylinder and engine oil was caught on drip pans, and, after being filtered, was used again as engine oil in the bearings. The oil from the air cylinders was not saved, nor was that from the steam cylinders caught at the separator.

Cost of Operating the Power-House Plants.—In order to give an idea of the general cost of running these plants, Tables 3 and 4 are given as typical of the force employed and the general supplies needed for a 24-hour run of one plant. Table 3 gives a typical run during the period of driving the shields, and Table 4 is typical of the period of concrete construction. In the latter case the tunnels were under normal air pressure. Before the junction of the shields, both plants were running continuously; after the junction, but while the tunnels were still under compressed air, only one power-house plant was operated.

TABLE 3.—Cost of Operating One Power-House for 24 Hours During Excavation and Metal Lining.

No. Labor. Rate per day. Amount.
6 Engineers $3.00 $18.00
6 Firemen 2.50 15.00
2 Oilers 2.00 4.00
2 Laborers 2.00 4.00
4 Pumpmen 2.75 11.00
2 Electricians 3.50 7.00
1 Helper 3.00 3.00
Total per day $62.00
Total for 30 days $1,860.00
Supplies.
Coal (14 tons per day) $3.25 $45.50
Water 7.00 7.00
Oil (4 gal. per day) 0.50 2.00
Waste (4 lb. per day) 0.07 0.28
Other supplies 1.00 1.00
Total per day $55.78
Total for 30 days $1,673.00
Total cost of labor and supplies for 30 days

Pages